

# L1Calo Fiberplant Update WBS 1.3.3

Reinhard Schwienhorst Level 3 Manager Michigan State University

November 22, 2013



## Schedule

#### **3** 2014:

- Testing of components
- Strawman design

#### **4** 2015:

- Strawman designs for 2 options
- Demonstrator fiber plant
- End of the year: technology decision
  - Number and location of inputs available
  - Link speed decided

#### **3** 2016:

Fiber plant design

#### **3** 2017:

Fiber plant assembly/testing



# Schedule

| ATLAS       |                                                                                          |
|-------------|------------------------------------------------------------------------------------------|
| 1.Feb.2014  | fiber test equipment at MSU                                                              |
| 1.Apr.2014  | optical test bench set up                                                                |
| 1.May.2014  | strawman design input specification                                                      |
| 1.July.2014 | survey of available technologies                                                         |
| 1.Sept.2014 | component tests have started                                                             |
| 1.Nov.2014  | first strawman design available                                                          |
| 1.Dec.2014  | Preliminary Design Review (CERN)                                                         |
| 15.Jan.2015 | Passive Demonstrator Design                                                              |
| 15.Feb.2015 | Begin Building Passive Demonstrator                                                      |
| 15.Mar.2015 | Hubs Prototypes to MSU                                                                   |
| 1.May.2015  | Start testing active splitter components                                                 |
| 1.Jun.2015  | Passive Demonstrator Complete                                                            |
| 1.Aug.2015  | Demonstrator fiber plant to CERN for prototype integration tests                         |
| 31.Dec.2015 | Engineering design specifications finalized for passive and active components (external) |
| 1.May.2016  | Strawman design with final components                                                    |
| 1.Sept.2016 | active and passive components validated                                                  |
| 1.Nov.2016  | Production readiness review (CERN)                                                       |
| 1.Apr.2016  | Production passive component design sent for manufacturing                               |
| 1.Aug.2016  | ·                                                                                        |
|             | Complete set of all components at MSU                                                    |
| 31.Jul.2017 | ·                                                                                        |
| 2.Oct.2017  |                                                                                          |
|             | Fiber Plant ready to install                                                             |
| 24 1 2040   | Dearwined in ATLAC for full avalone test                                                 |



# Fiber plant components

- Provide translation of fiber mapping from LAr and Tile to eFEX and jFEX
  - Trigger tower by trigger tower, super cell by super cell
- Provide duplication of some signals as required
  - Overlapping regions processed by different FEX cards
- $\clubsuit$  Passive optical splitters provide  $1 \rightarrow 2$  splitting
- ❖ Active splitting needed for corners and special places
  - Design and build custom modules to accomplish this
  - Require low jitter and low latency
- Alternatives to active splitters?
  - Careful mapping of fibers to transmitters to avoid empty transmitters?
    - Doesn't appear feasible
  - More powerful transmitters, more sensitive receivers?
    - Not available



## Hardware cost

#### Questions/assumptions:

- Ribbon cables from LAr to fiber plant and from fiber plant to eFEX,
   jFEX not included
- Fiber plant has input connectors and output connectors

## Fiber plant components

- eFEX fiber plant mapping and passive splitting \$160k
- jFEX fiber plant mapping and passive splitting \$96k
- Numbers have not bee updated since Spring 2013 estimate
- Demonstrator, test fibers, connectors, splitters
  - \$25k
- gFEX would require additional splitting and mapping
- Active splitter cards in jFEX or gFEX crate?



# **Backup slides**



# Fiber plant connections



- Fiber ribbons are bundled into cables
  - Mapping required for eFEX, jFEX not the same as from LAr and Tile
- $\diamond$  Passive optical  $1\rightarrow 2$  splitting for overlap regions of two sliding windows
- Active splitting required for fibers on corners
  Reinhard Schwienhorst, L1Calo, WBS 1.3.3

  DOE CD-1 Review of the LHC ATLAS-U Project, August 28-29, 2013



# **Staged mapping**

Stage 1: separate eFEX/jFEX Active and passive splitting



Stage 2: Map to specific eFEX/jFEX boards



- Each stage consists of small number of identical modules
  - Some exceptions likely necessary
- Connections commercial or by hand or both



# Commercial fiber mapping

## Molex flex fibreplane





# **By-hand channel mapping**





# **Fiber plant Enclosure**



- Need rack space, front and back
- Not yet clear how much space is needed



# Active or passive splitting

- Current push in LAr is to have more DPS than needed
  - Duplication on DPS
  - Some mapping on DPS
- But DPSs are expensive
  - Could be cheaper to just buy splitters
- $\clubsuit$  Active splitting required for  $1\rightarrow 4$ 
  - Commercial fiber repeater or splitter
  - Custom board with virtex 7 (40 inputs, 80 outputs)
    - Learn from HUB experience
    - Learn from jFEX, eFEX experience
- If running at 10 GB/s
  - Fewer fibers and different mapping
  - If lots of DPS and 10 GB/s → no splitting
- No decision can be made until LAr and Tile design finalized and link speed decided



## Fibers to ribbons to cables

## **Ar outputs:**

- To eFEX: Two towers per fiber (100 bits per tower, BCmux)
- To jFEX: 8 towers per fiber (13 bits per tower)
- Four ribbons are grouped into one cable
- DPS modules wrap around phi for a fixed eta

## **L1Calo inputs:**

- Six ribbons per cable
- Adjacent etas for fixed phi processed on the same board
- eFEX: ~20 modules, each receiving ~200 fibers
- ❖ jFEX: 8 modules, each receiving ~70 fibers
- \* Require careful mapping of every fiber between connectors
- Signal sharing between different FPGAs on the same board is done electrically



# LAr overlap regions - eFEX



- **\*** Each shaded region corresponds to one fiber
- This image corresponds to two eFEX modules
  - one barrel (0.0 to 0.8 in eta), one endcap (0.8 to 2.4 in eta)
- Four copies of specific towers/super cells needed
  - EM barrel/endcap overlap region likely to have underused fibers



# LAr overlap regions - jFEX



- This image corresponds to one jFEX module
  - Fewer jFEX fibers, but need four copies for the center of the detector
- Times 2 for full eta coverage
- Times 8 for full phi coverage



# Tile overlap regions



- Each differently shaded region corresponds to one fiber
- One jFEX module for one side of detector (4 fibers in phi)
- \* Active splitting to send four copies where required
- Not yet decided how to handle overlap region



## **Material and Travel**

- ❖ Fiber plant module cost (\$256k) off-project
  - Fiber plant and passive splitters are commercial product
  - eFEX fiber plant \$160k
  - jFEX fiber plant \$96k
  - Only one final fiber plant each for eFEX, jFEX
  - Includes active splitter parts and devices
- No other material cost
- Travel for engineer Laurens is in WBS item 1.3.2.1
- Engineer Ermoline is based at CERN